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Abstract

RNA-seq is a powerful tool for transcriptome analysis. It enables the discovery of novel
transcript splice sites and isoforms, and there is interest in the quantitative comparison of
exon usage between different conditions. For the analysis of differential expression between
conditions, appropriate modeling of the experimental and biological variability is important,
and such capabilities are offered, for instance, by the packages edgeR˜ [?] and DESeq˜ [1].
However, there is currently no software that specifically addresses exon level expression
and differential exon usage. In this package, we provide a method to systematically detect
differential exon usage using RNA-seq. We use as input the number of reads mapping to
each of the exons of a genome. The method is demonstrated on the data from the package
pasilla.

1 The Pasilla dataset

We will use the pasillaExons dataset from the pasilla package. pasillaExons is an object of
class ExonCountSet. Brooks et al.˜ [2] investigated the effect of siRNA knock-down of Pasilla,
whose protein is known to bind to mRNA in the spliceosome, and which is thought to be involved
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in the regulation of splicing, on the transcriptome of fly S2-DRSC cells. Pasilla is the Drosophila
melanogaster ortholog of mammalian NOVA1 and NOVA2. The dataset, which is provided by
NCBI Gene Expression Omnibus (GEO) under the accession number GSE185081, contains 3
biological replicates of the knockdown as well as 4 biological replicates for the untreated control.

In the pasilla package, we provide data from a subset of genes. A subset was chosen in order
to speed up the computations shown in this vignette. We start by loading the DEXSeq package
and the example data.

> library("DEXSeq")

> data("pasillaExons", package = "pasilla")

The pData accessor function shows the available sample annotations.

> pData(pasillaExons)

sizeFactor condition replicate type

treated1fb NA treated 1 single-read

treated2fb NA treated 2 paired-end

treated3fb NA treated 3 paired-end

untreated1fb NA untreated 1 single-read

untreated2fb NA untreated 2 single-read

untreated3fb NA untreated 3 paired-end

untreated4fb NA untreated 4 paired-end

We also print the first 6 lines of selected columns of the feature data annotation:

> head(fData(pasillaExons)[, c(1, 2, 7:10)])

geneID exonID chr start end strand

FBgn0000256:001 FBgn0000256 E001 chr2L 3872658 3872947 -

FBgn0000256:002 FBgn0000256 E002 chr2L 3873019 3873322 -

FBgn0000256:003 FBgn0000256 E003 chr2L 3873385 3874395 -

FBgn0000256:004 FBgn0000256 E004 chr2L 3874450 3875302 -

FBgn0000256:005 FBgn0000256 E005 chr2L 3878895 3879067 -

FBgn0000256:006 FBgn0000256 E006 chr2L 3879652 3880038 -

There are 46 genes in the dataset, of these, there is one with 36 exons, and for instance, three
with 16 exons:

> table(table(geneIDs(pasillaExons)))

0 1 2 3 4 5 6 7 8 9 10 11 12

14424 2 3 3 2 4 2 3 3 3 2 3 2

15 16 17 19 22 23 24 25 36

1 3 2 1 1 3 1 1 1

In Section˜7, we explain how you can create analogous data objects from your own data.

1http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE18508
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2 Normalisation and dispersion estimation

Different samples might be sequenced with different depths. In order to adjust for such coverage
biases, we introduce size factor parameters. DEXSeq uses the same method as DESeq, which is
provided in the function estimateSizeFactors.

> pasillaExons <- estimateSizeFactors(pasillaExons)

> sizeFactors(pasillaExons)

treated1fb treated2fb treated3fb untreated1fb untreated2fb untreated3fb

1.084 0.970 0.932 1.092 1.447 0.827

untreated4fb

0.827

To test for differential expression, we need to estimate the data’s variance. This is needed to
be able to distinguish between normal technical and biological variation (noise) and real effects
on gene expression between the different conditions. The information on the size of the noise is
drawn from the biological replicates in the dataset. However, as typical for RNA-seq experiments,
the number of replicates is too small to estimate variance or dispersion parameters individually
gene by gene. Instead, variance information is shared across genes, in an intensity dependent
manner. Computationally, this is done through Cox-Reid likelihood estimation (our method
follows that of the package edgeR˜ [?]), and by fitting a regression of the dispersion values on
the mean. These steps are implemented in the function estimateDispersions.

> pasillaExons <- estimateDispersions(pasillaExons)

The result from the Cox-Reid estimation is stored in the column dispersion_CR_est of the
feature data. Then, the dispersion-mean relation α = α0 + α1/µ is fit to these values (and
the coefficients stored in slot dispFitCoefs). Finally, for each exon, the maximum of the CR
estiomate and the fitted value is taken as the exon’s final dispersion value and stored in the
dispersion slot.

> head(fData(pasillaExons)$dispersion_CR_est)

[1] 0.0381 0.0130 0.0252 0.0452 0.0524 0.0841

> pasillaExons@dispFitCoefs

(Intercept) I(1/means[good])

0.0433 1.4081

> head(fData(pasillaExons)$dispersion)

[1] 0.0539 0.0497 0.0455 0.0465 0.0547 0.6671

In Section˜4, we will see how to incorporate further experimental or technical variables into
the dispersion estimation.
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3 Testing for differential exon usage

Having the dispersion estimates and the size factors, we can now test for differential exon usage.
For each gene, we fit a generalized linear model with the formula

sample + exon + condition * I(exon == exonID)

and compare it to the smaller model (the null model)

sample + exon + condition.

We compare the deviances of both fits using a χ2-distribution. To create a data frame that
encodes the model for a gene, with columns sample, exon, condition, sizeFactors and count,
the function modelFrameForGene is used.

> head(modelFrameForGene(pasillaExons, "FBgn0010909"))

sample exon sizeFactor condition replicate type dispersion count

1 treated1fb E001 1.08 treated 1 single-read 0.2009 3423

2 treated1fb E002 1.08 treated 1 single-read 0.0575 443

3 treated1fb E003 1.08 treated 1 single-read 0.0455 589

4 treated1fb E004 1.08 treated 1 single-read 0.0463 671

5 treated1fb E005 1.08 treated 1 single-read 0.0653 637

6 treated1fb E006 1.08 treated 1 single-read 0.0450 816

The actual test (which already includes a call to modelFrameForGene) is performed by the function
testGeneForDEU:

> testGeneForDEU(pasillaExons, "FBgn0010909")

deviance df pvalue

E001 0.0798 1 7.78e-01

E002 0.4040 1 5.25e-01

E003 0.0423 1 8.37e-01

E004 1.0590 1 3.03e-01

E005 2.2407 1 1.34e-01

E006 0.5873 1 4.43e-01

E007 0.2365 1 6.27e-01

E008 0.0356 1 8.50e-01

E009 0.0491 1 8.25e-01

E010 62.9543 1 2.11e-15

E011 1.4860 1 2.23e-01

E012 0.0490 1 8.25e-01

E013 1.4334 1 2.31e-01

E014 0.0833 1 7.73e-01

E015 0.0870 1 7.68e-01

E016 0.1898 1 6.63e-01

E017 0.2882 1 5.91e-01

E018 1.6767 1 1.95e-01

E019 0.0632 1 8.01e-01

E020 0.6447 1 4.22e-01

E021 0.0808 1 7.76e-01

E022 0.4237 1 5.15e-01

E023 3.5248 1 6.05e-02
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We see that there is one exon, E010, with a very small p value, while for all other exons, the p
values are unremarkable.

A convenient interface which calls testGeneForDEU for all genes and fills the pvalue and pad-

just columns of the featureData slots of the ExonCountSet object with the results is provided
by the function testForDEU.

> pasillaExons <- testForDEU(pasillaExons)

Testing for differential exon usage

The function DEUresultTable provides a summary table of the results.

> res1 <- DEUresultTable(pasillaExons)

> table(res1$padjust < 0.1)

FALSE TRUE

453 16

4 Batch effects

In the previous section we performed the analysis of differential exon usage ignoring the infor-
mation regarding the library type of the samples.

> design(pasillaExons)

condition replicate type

treated1fb treated 1 single-read

treated2fb treated 2 paired-end

treated3fb treated 3 paired-end

untreated1fb untreated 1 single-read

untreated2fb untreated 2 single-read

untreated3fb untreated 3 paired-end

untreated4fb untreated 4 paired-end

In this section, we show how to take the factor type into account in the analysis. First, we need
to provide the function estimateDispersions with a formula that makes it aware of the additional
factor (besides condition, which it considers by default).

> formuladispersion <- count ~ sample + (exon + type) * condition

> pasillaExons <- estimateDispersions(pasillaExons, formula = formuladispersion)

Dispersion estimation. (Progress report: one dot per 100 genes)

Setting up model frames

Setting up model matrices.

Calculating initial fits.

Performing Cox-Reid dispersion estimation

Fitting mean-dispersion relation

Finished with dispersion estimation.

Second, for the testing, we will also change the two formulas to take into account the library
type.
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Figure 1: Comparison of differential exon usage p values from analysis with (y-axis, res2) and
without (x-axis, res1) consideration of batch (library type) effects.

> formula0 <- count ~ sample + type * exon + condition

> formula1 <- count ~ sample + type * exon + condition * I(exon ==

+ exonID)

> pasillaExons <- testForDEU(pasillaExons, formula0 = formula0,

+ formula1 = formula1)

Testing for differential exon usage

> res2 <- DEUresultTable(pasillaExons)

> table(res2$padjust < 0.1)

FALSE TRUE

455 14

Fixme: The results look not very different from those of Section˜3:

> bottom = function(x) pmax(x, 1e-06)

> plot(bottom(res1$padjust), bottom(res2$padjust), log = "xy")

See Figure˜1.

5 Visualization

DEXSeq has a function to visualize the results of testForDEU.
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Figure 2: The plot represents the expression estimates from a call to testForDEU. Shown in red
is the exon that showed significant differential exon usage.

> plotDEXSeq(pasillaExons, "FBgn0010909", cex.axis = 1.2, cex = 1.3,

+ lwd = 2, legend = TRUE)

The result is shown in Figure˜2. Optionally, one can also visualize the transcript models
(Figure˜3), which might be useful for putting differential exon usage results into the context of
isoform regulation.

> plotDEXSeq(pasillaExons, "FBgn0010909", displayTranscripts = TRUE,

+ cex.axis = 1.2, cex = 1.3, lwd = 2, legend = TRUE)

Another useful option is to look at the count values from the individual samples, rather than
at the model effect estimates. For this display, it is useful to normalize the counts by the size
factors (Figure˜4).

> plotDEXSeq(pasillaExons, "FBgn0010909", coefficients = FALSE,

+ norCounts = TRUE, cex.axis = 1.2, cex = 1.3, lwd = 2, legend = TRUE)

To generate an easily browsable, detailed overview over all analysis results, the package
provides an HTML report generator, implemented in the function DEXSeqHTML. This function
uses the package hwriter to create a result table with links to plots for the significant results,
allowing a more detailed exploration of the results. To see an example, visit http://www.embl.
de/~reyes/DEXSeqReport/testForDEU.html. The report shown there was generated using this
code.

> DEXSeqHTML(pasillaExons, FDR = 0.1, color = c("#FF000080", "#0000FF80"))
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Figure 3: As in Figure˜2, but including the annotated transcript models.

6 Gene count table

The function geneCountTable computes a table of gene counts, which are obtained by summing the
counts from all exons with the same geneID. This might be useful for the detection of differential
expression of genes, where the table can be used as input e. g. for the packages DESeq or edgeR.

> head(geneCountTable(pasillaExons))

treated1fb treated2fb treated3fb untreated1fb untreated2fb

FBgn0000256 2285 2231 1889 2369 4675

FBgn0000578 6748 5808 5520 6910 11338

FBgn0002921 18397 19684 15691 15686 21674

FBgn0003089 12 8 7 3 16

FBgn0010226 212 248 228 184 252

FBgn0010280 4085 4611 4225 4145 6597

untreated3fb untreated4fb

FBgn0000256 2191 2138

FBgn0000578 6042 5351

FBgn0002921 10953 11842

FBgn0003089 13 9

FBgn0010226 131 193

FBgn0010280 3914 3768
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Figure 4: As in Figure˜2, with normalized count values of each exon in each of the samples.

7 Creating ExonCountSet objects

7.1 From files produced by HTSeq

In this section, we describe how to create an ExonCountSet from an alignment of the RNA-seq
reads to the genome, in SAM format, and a file describing gene and transcript models in GTF
format.

The first steps of this workflow involve two scripts for the Python library HTSeq. These scripts
are provided as part of the R package DEXSeq. The first script, dexseq_prepare_annotation.py,
parses an annotation file in GTF format to define non-overlapping exonic regions: for instance,
consider a gene whose transcripts contain either of two exons whose genomic regions overlap. In
such a case, the script defines three exonic regions: two for the non-overlapping parts of each
of the two exons, and a third one for the overlapping part. The script produces as output a
new file in GTF format. The second script, dexseq_count.py, reads the GTF file produced by
dexseq_prepare_annotation.py and an alignment in SAM format and counts the number of
reads falling in each of the defined exonic regions.

The DEXSeq function read.HTSeqCounts is then able to read the output from these scripts
and returns an ExonCountSet object with the relevant information for differential exon usage
analysis and visualization. Of course, users can postprocess or replace the annotation in the
object using their own means in R.

The files that were used in this way to create the pasillaGenes object are provided within
the pasilla package:
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> dir(system.file("extdata", package = "pasilla"))

[1] "Dmel.BDGP5.25.62.DEXSeq.chr.gff" "geneIDsinsubset.txt"

[3] "treated1fb.txt" "treated2fb.txt"

[5] "treated3fb.txt" "untreated1fb.txt"

[7] "untreated2fb.txt" "untreated3fb.txt"

[9] "untreated4fb.txt"

The vignette2 of the package pasilla provides a complete transcript of these steps.

7.2 From elementary R data structures

Users can also provide their own data, contained in elementary R objects, directly to the function
newExonCountSet in order to create an ExonCountSet object. The minimum requirements are

1. a per-exon count matrix, with one row for every exon and one column for every sample,

2. a vector, matrix or data frame with information about the samples, and

3. two vectors of gene and exon identifiers that align with the rows of the count matrix.

With such a minimal object, it is possible to perform the analysis for differential exon usage,
but the visualization functions will not be so useful. The necessary information about exons
start and end positions can be given as a data frame to the newExonCountSet function, or can
be added to the ExonCountSet object after its creation via the featureData accessor. For more
information, please see the manual page of newExonCountSet.

> bare <- newExonCountSet(countData = counts(pasillaExons), design = design(pasillaExons),

+ geneIDs = geneIDs(pasillaExons), exonIDs = exonIDs(pasillaExons))
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8 Session Information

> sessionInfo()

R version 2.14.0 Under development (unstable) (2011-06-09 r56106)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.utf8 LC_NUMERIC=C

[3] LC_TIME=en_US.utf8 LC_COLLATE=C

2Data preprocessing and creation of the data objects pasillaGenes and pasillaExons
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[5] LC_MONETARY=en_US.utf8 LC_MESSAGES=en_US.utf8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.utf8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] DEXSeq_0.1.9 Biobase_2.13.6

loaded via a namespace (and not attached):

[1] MASS_7.3-13 hwriter_1.3 tools_2.14.0

11


	The Pasilla dataset
	Normalisation and dispersion estimation
	Testing for differential exon usage
	Batch effects
	Visualization
	Gene count table
	Creating ExonCountSet objects
	From files produced by HTSeq
	From elementary R data structures

	Session Information

